

Technical Datasheet

Material

		Fer	rous Material		
	Materi	Compariso	n as nations		
1	Middle		Small		(U.S.A)
Large	міаасе		Small	Designation	Identification
		Ambi	ent and Higher	A234	WPB
	Carbon	Temp	erature Service	AZ34	WPC
	Steel		T		WPL3
	Steet	Low	Temperature Service	A420	WPL6
			Service		WPL9
					WP1
	Alloy Steel (Cr≥1%)				WP12
				A234	WP11
			Low Alloy		WP22
			6 ≤ Cr ≤ 9%)		WP5
		(1,	0 2 61 2 7 70)		WP23
F					WP9
Ferrous (Base					WP91
Mat'l:Fe)					WP92
			Martensitic Stainless Steel	A815	WP410
			Ferritic Stainless Steel	7010	WP430
					WP304/L
		1408 4 00000	Austenitic		WP316/L
		High Alloy	Stainless Steel	A403	WP317/L
		(Cr ≥ 12%)			WP321/H
		:Stainless			WP347/H
		Steel	Super Austenitic	A403	S31254
			Stainless Steel		904L
			Ferritic / Austenitic		S31803
			(Duplex / Super Duplex)	A815	S32750
		(Dublex / Super Dublex)			S32760

Applicable Code/Standard : ASTM Part A, Latest Edition,
 Non Registered materials on ASTM Latest Edition.

Non-Ferrous Material Comparison					
Material Classification	Trade Mark	UNS NO.			
	Inconel 600	N06600			
	Inconel 690	N06690			
	Inconel 800H / 800HT	N08810 / N08811			
Non-Ferrous (Base Mat'l : Ni)	Inconel 625	N06625			
	Incoloy 825	N08825			
	Hastelloy B2	N10665			
(Busc Mut (. NI)	Hastelloy C276	N10276			
	Hastelloy C22	N06022			
	Incoloy 020	N08020			
	Monel 400	N04400			
	Monel K500	N05500			
Non-Ferrous	Cu-Ni 70/30	C71500			
(Base Mat'l : Cu)	Cu-Ni 90/10	C70600			

Applicable Code/Standard : ASTM Part B, Latest Edition.

Specification

KS: KOREAN INDUSTRIAL STANDARDS

KS B 1522	Steel Butt Welding Pipe Fittings for Oidinary use
	and Fuel Gas.
KS B 1541	Steel Butt Welding Pipe Fittings.
KS B 1542	Steel Socket Welding Pipe Fittings.
KS B 1543	Steel Plate Butt Welding Pipe Fittings.

JIS: JAPANESE INDUSTRIAL STANDARDS

JIS B 2311	Steel Butt Welding Pipe Fittings for Ordinary use.
JIS B 2312	Steel Butt Welding Pipe Fittings.
JIS B 2313	Steel Plate Butt Welding Pipe Fittings.
JIS B 2316	Steel Socket Welding Pipe Fittings.

ASTM: AMERICAN SOCIETY FOR TESTING AND MATERIALS

ASTM A 105	Carbon Steel Forgings for Piping Applications
ASTM A 182	Forged or Rolled Alloy Steel Pipe Flanges, Forged Fittings and Valves and Parts for high Temperature Service
ASTM A 234	Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
ASTM A 350	Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components
ASTM A 403	Wrought Austenitic Stainless Steel Piping Fittings
ASTM A 420	Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service
ASTM A 694	Carbon and Alloy Steel Forgings for Pipe Flanges, Fittings Valves, and Parts for High-Pressure Transmission Service
ASTM A 815	Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings
ASTM A 860	Wrought High-Strength Low-Alloy Steel Butt-Welding Fittings
ASTM B 366	Factory-Made Wrought Nickel and Nickel Alloy Fittings

MSS: MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY

MSS SP-25	Standard Marketing System for Valves, Fittings, Flanges and Unions.
MSS SP-43	Wrought Stainless Steel Butt Welding Fittings.
MSS SP-44	Standard for Steel Pipe Line Flanges.
MSS SP-75	Specification for High Test Wrought Butt Welding Fittings
MSS SP-79	Socket Welding Reducer Inserts.
MSS SP-83	Carbon Steel Pipe Union Socket welding and Threaded.
MSS SP-87	Factory-Made Butt Welding Fittings for Class 1 Nuclear Piping Applications.
MSS SP-95	Swage(d) Nipples and Bull Plugs.
MSS SP-97	Integrally Reinforced Forged Branch Outlet Fittings- socket Welding, Threaded and Butt Welding Ends.

ASME : AMERICAN SOCIETY OF MECHANICAL ENGINEERS ASME : ASME BOILER AND PRESSURE VESSEL CODE AN INTERNATIONAL CODE

ASME B 16.5	Pipe Flanges and Flanged Fittings.
ASME B 16.9	Factory Made Wrought Steel Butt Welding Fittings.
ASME B 16.11	Forged Fittings, Socket welding and Threaded
ASME B 16.25	Butt Welding Ends.
ASME B 36.10	Welded and Seamless Wrought Steel Pipe.
ASME B 36.19	Stainless Steel Pipe.
ASME B31.1	Power piping.
ASME B31.3	Process piping.
ASME SECTION I	Materials.
ASME SECTION Ⅲ	Rules for Construction of Nuclear Facirity Components.
ASME SECTION V	Nondestructive Examination.
ASME SECTION VIII	Rule for Construction of Pressure Vessels.
ASME SECTION IX	Welding and Brazing Qualifications.

API: AMERICAN PETROLEUM INSTITUTE

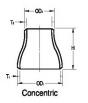
API 5L Line Pipe.

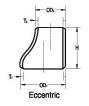

90° **Elbow** (Long, Short) 45° Elbow (Long)

Sch5s, Sch10s, Sch40s, Sch80s

Management	Outside	Ce	enter to E	nd	5	S
Nominal Pipe Size	Diameter	Lo	ng	Short	Т	I.D
1 1pc 512c	0.D	Α	В	Α		1.0
1/2	0.840	1.50	0.62		0.065	0.710
3/4	1.050	1.05	0.75		0.065	0.920
1	1.315	1.50	0.88	1.00	0.065	1.185
1-1/4	1.660	1.88	1.00	1.25	0.065	1.530
1-1/2	1.900	2.25	1.12	1.50	0.065	1.770
2	2.375	3.00	1.38	2.00	0.065	2.24
2-1/2	2.875	3.75	1.75	2.50	0.083	2.709
3	3.500	4.25	2.00	3.00	0.083	3.334
3-1/2	4.000	5.25	2.25	3.50	0.083	3.834
4	4.500	6.00	2.50	4.00	0.083	4.33
5	5.563	7.50	3.12	5.00	0.109	5.34
6	6.625	9.00	3.75	6.00	0.109	6.40
8	8.625	12.00	5.00	8.00	0.109	8.40
10	10.750	15.00	6.25	10.00	0.134	10.48
12	12.750	18.00	7.50	12.00	0.156	12.43
14	14.000	21.00	8.75	14.00	0.156	13.68
16	16.000	24.00	10.00	16.00	0.165	15.67
18	18.000	27.00	11.25	18.00	0.165	17.670
20	20.000	30.00	12.50	20.00	0.188	19.62
22	22.000	33.00	13.50	22.00	0.188	21.62
24	24.000	36.00	15.00	24.00	0.218	23.56
30	30.000	45.00	18.50		0.250	29.500

- For Bevel Details See Page 356
- For Dimensional Tolerances See Page 362
- Wall Thickness Conform to ASME B 36.19M Specifications

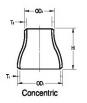


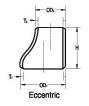

						Unit : inch)
Nominal	10)S	40	DS .	80	os
Pipe Size		I.D		I.D		I.D
1/2	0.083	0.674	0.109	0.622	0.147	0.546
3/4	0.083	0.884	0.113	0.824	0.154	0.742
1	0.109	1.097	0.133	1.049	0.179	0.957
1-1/4	0.109	1.442	0.140	1.380	0.191	1.278
1-1/2	0.109	1.682	0.145	1.610	0.200	1.500
2	0.109	2.157	0.154	2.067	0.218	1.939
2-1/2	0.120	2.635	0.203	2.469	0.276	2.323
3	0.120	3.260	0.216	3.068	0.300	2.900
3-1/2	0.120	3.760	0.226	3.548	0.318	3.364
4	0.120	4.260	0.237	4.026	0.337	3.826
5	0.134	5.295	0.258	5.047	0.375	4.813
6	0.134	6.357	0.280	6.065	0.432	5.761
8	0.148	8.329	0.322	7.981	0.500	7.625
10	0.165	10.420	0.365	10.020	0.500	9.750
12	0.180	12.390	0.375	12.000	0.500	11.750
14	0.188	13.624	0.375	13.250	0.500	13.000
16	0.188	15.624	0.375	15.250	0.500	15.000
18	0.188	17.624	0.375	17.250	0.500	17.000
20	0.218	19.564	0.375	19.250	0.500	19.000
22	0.218	21.564				
24	0.250	23.500	0.375	23.250	0.500	23.000
30	0.312	29.376				

Reducer

Sch5s, Sch10s, Sch40s, Sch80s

ASME B16.9, MSS SF	-43				
Nominal	Outside (Diameter	End to End	5	S
Pipe Size	OD1	OD2	Н	T1	T2
3/ ₄ X ¹ / ₂	1.050	0.840	1.50	0.065	0.065
1 X ³ / ₄	1.315	1.050	2.00	0.065	0.065
1 X ¹ / ₂	1.315	0.840	2.00	0.065	0.065
1- ¹ / ₄ X 1	1.660	1.315	2.00	0.065	0.065
1/ ₄ X ³ / ₄	1.660	1.050	2.00	0.065	0.065
1-1/ ₄ X 1/ ₂	1.660	0.840	2.00	0.065	0.065
1-1/ ₂ X 1-1/ ₄	1.900	1.660	2.50	0.065	0.065
1- ¹ / ₂ X 1	1.900	1.315	2.50	0.065	0.065
1-1/2 X 3/4	1.900	1.050	2.50	0.065	0.065
1-1/2 X 1/2	1.900	0.840	2.50	0.065	0.065
2 X 1- ¹ / ₂	2.375	1.900	3.00	0.065	0.065
2 X 1- ¹ / ₄	2.375	1.660	3.00	0.065	0.065
2 X 1	2.375	1.315	3.00	0.065	0.065
2 X ³ / ₄	2.375	1.050	3.00	0.065	0.065
2-1/ ₂ X 2	2.875	2.375	3.50	0.083	0.065
2-1/ ₂ X 1-1/ ₂	2.875	1.900	3.50	0.083	0.065
2- ¹ / ₂ X 1- ¹ / ₄	2.875	1.660	3.50	0.083	0.065
3 X 2-1/ ₂	3.500	2.875	3.50	0.083	0.083
3 X 2	3.500	2.375	3.50	0.083	0.065
3 X 1- ¹ / ₂	3.500	1.900	3.50	0.083	0.065
3 X 1- ¹ / ₄	3.500	1.660	3.50	0.083	0.065
3- ¹ / ₂ X 3	4.000	3.500	4.00	0.083	0.083
3-1/ ₂ X 2-1/ ₂	4.000	2.875	4.00	0.083	0.083
3- ¹ / ₂ X 2	4.000	2.375	4.00	0.083	0.065
4 X 3-1/ ₂	4.500	4.000	4.00	0.083	0.083
4X3	4.500	3.500	4.00	0.083	0.083

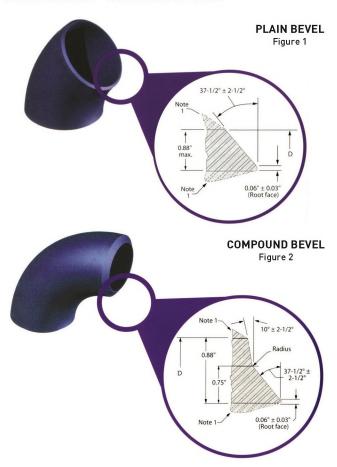

(Unit : inch)


Nominal	10)S	4()S	80	Onit : inch)
Pipe Size	T1	T2	T1	T2	T1	T2
3/ ₄ X ¹ / ₂	0.083	0.083	0.113	0.109	0.154	0.147
1 X ³ / ₄	0.109	0.083	0.133	0.113	0.179	0.154
1 X ¹ / ₂	0.109	0.083	0.133	0.109	0.179	0.147
1- ¹ / ₄ X 1	0.109	0.109	0.140	0.133	0.191	0.179
1/ ₄ X ³ / ₄	0.109	0.083	0.140	0.113	0.191	0.154
1-1/ ₄ X 1/ ₂	0.109	0.083	0.140	0.109	0.191	0.147
1-1/ ₂ X 1-1/ ₄	0.109	0.109	0.145	0.140	0.200	0.191
1- ¹ / ₂ X 1	0.109	0.109	0.145	0.133	0.200	0.179
1- ¹ / ₂ X ³ / ₄	0.109	0.083	0.145	0.113	0.200	0.154
1- ¹ / ₂ X ¹ / ₂	0.109	0.083	0.145	0.109	0.200	0.147
2 X 1- ¹ / ₂	0.109	0.109	0.154	0.145	0.218	0.200
2 X 1- ¹ / ₄	0.109	0.109	0.154	0.140	0.218	0.191
2 X 1	0.109	0.109	0.154	0.133	0.218	0.179
2 X ³ / ₄	0.109	0.083	0.154	0.113	0.218	0.154
2-1/ ₂ X 2	0.120	0.109	0.203	0.154	0.276	0.218
2-1/ ₂ X 1-1/ ₂	0.120	0.109	0.203	0.145	0.276	0.200
2- ¹ / ₂ X 1- ¹ / ₄	0.120	0.109	0.203	0.140	0.276	0.191
3 X 2- ¹ / ₂	0.120	0.120	0.216	0.203	0.300	0.276
3 X 2	0.120	0.109	0.216	0.154	0.300	0.218
3 X 1- ¹ / ₂	0.120	0.109	0.216	0.145	0.300	0.200
3 X 1- ¹ / ₄	0.120	0.109	0.216	0.140	0.300	0.191
3-1/ ₂ X 3	0.120	0.120	0.226	0.216	0.318	0.300
3-1/ ₂ X 2-1/ ₂	0.120	0.120	0.226	0.203	0.318	0.276
3- ¹ / ₂ X 2	0.120	0.109	0.226	0.154	0.318	0.218
4 X 3- ¹ / ₂	0.120	0.120	0.237	0.226	0.337	0.318
4X3	0.120	0.120	0.237	0.216	0.337	0.300

Reducer

Sch5s, Sch10s, Sch40s, Sch80s

ME B16.9, MSS SP-43 Nominal Outside Diameter End to End 5S								
Nominal			End to End		100			
Pipe Size	OD1	OD2	Н	T1	T2			
4 X 2-1/ ₂	4.500	2.875	4.00	0.083	0.083			
4 X 2	4.500	2.375	4.00	0.083	0.065			
5 X 4	5.563	4.500	5.00	0.109	0.083			
5 X 3- ¹ / ₂	5.563	4.000	5.00	0.109	0.083			
5 X 3	5.563	3.500	5.00	0.109	0.083			
5 X 2- ¹ / ₂	5.563	2.875	5.00	0.109	0.083			
6 X 5	6.625	5.563	5.50	0.109	0.109			
6 X 4	6.625	4.500	5.50	0.109	0.083			
6 X 3-1/ ₂	6.625	4.000	5.50	0.109	0.083			
6 X 3	6.625	3.500	5.50	0.109	0.083			
8 X 6	8.625	6.625	6.00	0.109	0.109			
8 X 5	8.625	5.563	6.00	0.109	0.109			
8 X 4	8.625	4.500	6.00	0.109	0.083			
10 X 8	10.750	8.625	7.00	0.134	0.109			
10 X 6	10.750	6.625	7.00	0.134	0.109			
10 X 5	10.750	5.563	7.00	0.134	0.109			
12 X 10	12.750	10.750	8.00	0.156	0.134			
12 X 8	12.750	8.625	8.00	0.156	0.109			
12 X 6	12.750	6.625	8.00	0.156	0.109			
14 X 12	14.000	12.750	13.00	0.156	0.156			
14 X 10	14.000	10.750	13.00	0.156	0.134			
14 X 8	14.000	8.625	13.00	0.156	0.109			
16 X 14	16.000	14.000	14.00	0.165	0.156			
16 X 12	16.000	12.750	14.00	0.165	0.156			
16 X 10	16.000	10.750	14.00	0.165	0.134			
18 X 16	18.000	16.000	15.00	0.165	0.165			



(Unit : inch)

Nominal	105		40S		(Unit : inch)	
Pipe Size	T1	T2	T1	T2	T1	T2
4 X 2-1/ ₂	0.120	0.120	0.237	0.203	0.337	0.276
4 X 2	0.120	0.109	0.237	0.154	0.337	0.218
5 X 4	0.134	0.120	0.258	0.237	0.375	0.337
5 X 3-1/ ₂	0.134	0.120	0.258	0.226	0.375	0.318
5X3	0.134	0.120	0.258	0.216	0.375	0.300
5 X 2-1/ ₂	0.134	0.120	0.258	0.203	0.375	0.276
6X5	0.134	0.134	0.280	0.258	0.432	0.375
6 X 4	0.134	1.120	0.280	0.237	0.432	0.337
6 X 3-1/ ₂	0.134	1.120	0.280	0.226	0.432	0.318
6X3	0.134	1.120	0.280	0.216	0.432	0.300
8X6	0.148	0.134	0.322	0.280	0.500	0.432
8 X 5	0.148	0.134	0.322	0.258	0.500	0.375
8 X 4	0.148	0.120	0.322	0.237	0.500	0.337
10 X 8	0.165	0.148	0.365	0.322	0.500	0.500
10 X 6	0.165	0.134	0.365	0.280	0.500	0.432
10 X 5	0.165	0.134	0.365	0.258	0.500	0.375
12 X 10	0.180	0.165	0.375	0.365	0.500	0.500
12 X 8	0.180	0.148	0.375	0.322	0.500	0.500
12 X 6	0.180	0.134	0.375	0.280	0.500	0.432
14 X 12	0.188	0.180	0.375	0.375	0.500	0.500
14 X 10	0.188	0.165	0.375	0.365	0.500	0.500
14 X 8	0.188	0.148	0.375	0.322	0.500	0.500
16 X 14	0.188	0.188	0.375	0.375	0.500	0.500
16 X 12	0.188	0.180	0.375	0.375	0.500	0.500
16 X 10	0.188	0.165	0.375	0.365	0.500	0.500
18 X 16	0.188	0.188	0.375	0.375	0.500	0.500

BEVEL DETAIL - WELDING FITTINGS

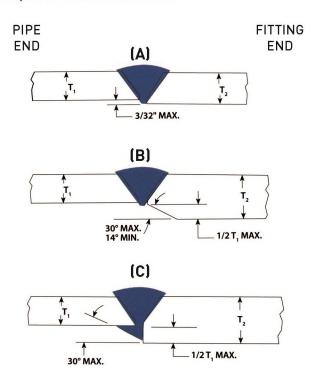

Wall Thickness(T)	End Preparation
Less than x [2]	Cut square or slightly chamfer, at manufacturer's option (not illustrated).
x to 0.88, inclusive	Plain bevel as in Figure 1 above.
More than 0.88	Compound bevel as in Figure 2 above.

Note

- 1. See ASME B16.9 for transition contours.
- 2. x = 0.19 " for carbon steel or ferritic alloy steel and 0.12" for austenitic alloy steel.

FLOW RESISTANCE EQUIVALENT LENGTH OF WELDBEND ELBOWS AND TEES

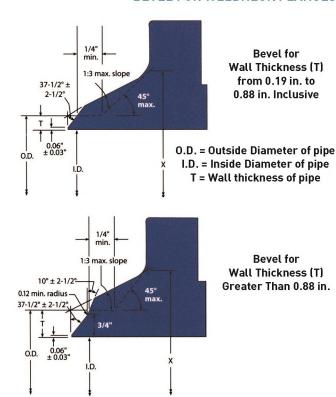
Nominal Pipe Size	Long Radius	Short Radius	Welding Tee
1	1.1	1.4	3.9
1-1/4	1.4	1.8	5.2
1-1/2	1.6	2.1	6.0
2	2.1	2.8	7.8
2-1/2	2.6	3.3	9.3
3	3.1	4.1	11.0
4	4.0	5.4	15.0
5	5.1	6.7	19.0
6	6.1	8.1	23.0
8	8.0	11.0	30.0
10	10.0	12.0	38.0
12	12.0	16.0	45.0
14	13.0	18.0	49.0
16	15.0	20.0	56.0
18	17.0	23.0	63.0
20	19.0	25.0	71.0
24	23.0	30.0	85.0
30	30.0	36.0	140.0
36	38.0	42.0	170.0
42	45.0	50.0	200.0
48	52.0	58.0	240.0


The infrmation given in the chart above illustrates the resestance of fittings ti the flow of liquids. This resistance is given in the equivalent of the straight pipe, and should be assumed as approximate information. Allowances have been made p for the curvature of elbows, so that the resistance values should be added to the total center-to end dimensions of the piping configuration.

Example using 6" pipe:

Resistance of Pipe:	[6.6+6.4+6.6] = 19.6
+ Resistance of Elbow	: = 6.1
Resistance of Tee:	= 23.0
	= 48.7

Therefore, the total resistance of the entire assembly to the flow of liquid would be equal to the resistance of 48.7 Linear feet of 6 $^{\prime\prime}$ straight pipe.

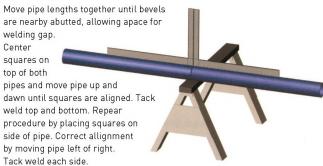

JOINING BUTTWELDING FITTINGS TO PIPE of equal or less wall thickness

NOTES

- Buttwelding fittings can be joined to pipe of lesser wall thickness with proper end preparation and joint design.
- 2. Above diagrams and recommendations that follow apply to components with ends originally prepared as standard $37-1/2^\circ$ or 30° degree bevels and where the wall thickness of the thicker end to be jined does not exceed 1-1/2 times the thinner (pipe) end.
- The nominal thickness T (pipe) and T (fitting) shall comply with the design requirements
 of the applicable section of the ASME B3²1 Code For Pressure Piping.
- Where the total nominal offser[T₂-T₁] dose not exceed 3/32" and full penetration and bonding is obtained during welding, no special treatment is required [see [A]].
- When the internal offset exceeds 3/32", taper cut in accordance with (B) ... or tape weld in accordance with (C)
- When joining ends with materials of unequal minimum specified yield strenghs (or unequal allowable stress), the deposited weld metal shall have mechanical properties at least equal to thoes of the higher strengh (pipe) end.
- 7. For treatments of ends with inequal external diameters and/or where T_2 is thicker than 1-1/2 times T_1 , refer to the applicable section of the ASME Code, e., B31.4 or B31.8 or B16.9.

BEVEL FOR WELDNECK FLANGES

NOTES


- 1. All dimensions are in inches/
- 2. When the thickness of the hub at the bevel is greater than that of the pipe to which the flange is joined and the additional thickness is provided on the outside diameter, a taper weld having a slope not exceeding 1 to 3 may be employed ot, alternatively, the greater outside diameter may be tapered at the same maximum slope or less, from a point on the welding bevel equal to the outside diameter of the mating pipe. Similarly, when the greater thickness is provided on the inside of the flange, it shall be taper-bored from the welding end at the slope not exceeding 1 to 3. When flanges covered by this Standard are intended for services with light wall, hugher stength pipe, the thickness of the hub at the bevel may be greater than that of the pipe to shich the flange is joined. Under there conditions, a single taper hub may be provided, and the outside diameter of the hub at the base (dimension X) may also be modified. The additional thickness may be provided on either inside or outside or partially on each side, but the total additional thickness shall not exceed one-half times the nominal wall thickness of intended mating pipe. See page 58.
- The hub transition from the outside diameter to the X diameter shall fall within the maximum and minimum envelope outlined by the 1:3 max, slope and dashed line.
- 4. For welding end dimensions, refer to ASME B16.25.

PIPE ALIGNMENT

Proper alignment is one of the most important tasks performed by the pipe filter. If done correctly, welding will be much easier and the piping system will be properly fabricated. If alignment is poor, however, welding will be difficult and the piping system may not function property.

Many device are available to aid alignment and methods of alignment vary widely throughout the trade. There is no best system ... any number of methods have proven successful. The procedures suggested by this manual are popular with many craftsmen and will enable you to quickly obtain good alignment.

Pipe-to-Pipe

45° Elbow-to-pipe Follow procedure 90° elbow-to-pipe as described on the previous page except squares will cross. To obtain correct 45° angle, align the same numbers on the inside scale of the titled square.

Alternate Method for 45° Elbow-to-pipe

Use same procedure to abut pipe and fitting. Center spirit level pipe. Next, center 45° spirit level on face of elbow and move elbow until 45° bubble is centered.

Tee-to-Pipe

Abut bevels, allowing for welding gap. Tack weld on top. Center square on top pipe. Place second square on center of branch outlet.

Move tee until squares are aligned.

Alternate Method for Tee-to-Pipe

Follow same procedure to abut pipe and fitting. Place square on tee as illustrated. Center rule on top of pipe.
Blade of square should be parallel with pipe.
Check by measuring with rule at several points along the pipe.

Flange-to-Pipe

STEP 1. Abut flange to pipe. Align top two holes of flange with spirit level.

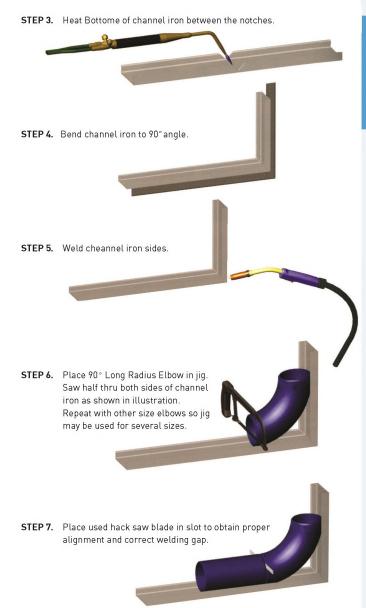
Move flange until bubble centerd. Make one tack weld on top.

STEP 2. Center square on feca of flange. Center rule on top of pipe. Move flange until square and pipe are parallel. Tack weld bottom.

STEP 3. Center square on feca of flange.

Center rule on side of pipe and align as in STEP 2.

Tack both sides.


JIG FOR SMALL DIAMETER PIPING

Many pipe fitters have found this simple jig to be helpful in aligning small diameter pipe and elbows. It is made from channel iron approximately 3'9"long. Use $1/8" \times 1-1/2"$ for pipe sizes 1-1/4" thru 3"; $1/8" \times 3/4"$ for sizes 1" or smaller.

STEP 1. Mark 90° notch on side of channel iron about 9" from end. Make equal notch on other side.

STEP 2. Cut out notches with hack saw.

